Null Set - Definition

Definition

Let X be a measurable space, let μ be a measure on X, and let N be a measurable set in X. If μ is a positive measure, then N is null (or zero measure) if its measure μ(N) is zero. If μ is not a positive measure, then N is μ-null if N is |μ|-null, where |μ| is the total variation of μ; equivalently, if every measurable subset A of N satisfies μ(A) = 0. For positive measures, this is equivalent to the definition given above; but for signed measures, this is stronger than simply saying that μ(N) = 0.

A nonmeasurable set is considered null if it is a subset of a null measurable set. Some references require a null set to be measurable; however, subsets of null sets are still negligible for measure-theoretic purposes.

When talking about null sets in Euclidean n-space Rn, it is usually understood that the measure being used is Lebesgue measure.

Read more about this topic:  Null Set

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!—But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.
    Ralph Waldo Emerson (1803–1882)

    Mothers often are too easily intimidated by their children’s negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.
    Elaine Heffner (20th century)