Definition
Let X be a measurable space, let μ be a measure on X, and let N be a measurable set in X. If μ is a positive measure, then N is null (or zero measure) if its measure μ(N) is zero. If μ is not a positive measure, then N is μ-null if N is |μ|-null, where |μ| is the total variation of μ; equivalently, if every measurable subset A of N satisfies μ(A) = 0. For positive measures, this is equivalent to the definition given above; but for signed measures, this is stronger than simply saying that μ(N) = 0.
A nonmeasurable set is considered null if it is a subset of a null measurable set. Some references require a null set to be measurable; however, subsets of null sets are still negligible for measure-theoretic purposes.
When talking about null sets in Euclidean n-space Rn, it is usually understood that the measure being used is Lebesgue measure.
Read more about this topic: Null Set
Famous quotes containing the word definition:
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)