In organic and inorganic chemistry, nucleophilic substitution is a fundamental class of reactions in which an electron nucleophile selectively bonds with or attacks the positive or partially positive charge of an atom or a group of atoms called the leaving group; the positive or partially positive atom is referred to as an electrophile.
The most general form for the reaction may be given as
- Nuc: + R-LG → R-Nuc + LG:
The electron pair (:) from the nucleophile (Nuc) attacks the substrate (R-LG) forming a new bond, while the leaving group (LG) departs with an electron pair. The principal product in this case is R-Nuc. The nucleophile may be electrically neutral or negatively charged, whereas the substrate is typically neutral or positively charged.
An example of nucleophilic substitution is the hydrolysis of an alkyl bromide, R-Br, under alkaline conditions, where the attacking nucleophile is the OH− and the leaving group is Br-.
- R-Br + OH− → R-OH + Br−
Nucleophilic substitution reactions are commonplace in organic chemistry, and they can be broadly categorised as taking place at a saturated aliphatic carbon or at (less often) a saturated aromatic or other unsaturated carbon centre.
Read more about Nucleophilic Substitution: Nucleophilic Substitution Reactions, Nucleophilic Substitution At Unsaturated Carbon Centres
Famous quotes containing the word substitution:
“To play is nothing but the imitative substitution of a pleasurable, superfluous and voluntary action for a serious, necessary, imperative and difficult one. At the cradle of play as well as of artistic activity there stood leisure, tedium entailed by increased spiritual mobility, a horror vacui, the need of letting forms no longer imprisoned move freely, of filling empty time with sequences of notes, empty space with sequences of form.”
—Max J. Friedländer (18671958)