Normal Subgroup - Definitions

Definitions

A subgroup, N, of a group, G, is called a normal subgroup if it is invariant under conjugation; that is, for each element n in N and each g in G, the element gng−1 is still in N. We write

For any subgroup, the following conditions are equivalent to normality. Therefore any one of them may be taken as the definition:

  • For all g in G, gNg−1 ⊆ N.
  • For all g in G, gNg−1 = N.
  • The sets of left and right cosets of N in G coincide.
  • For all g in G, gN = Ng.
  • N is a union of conjugacy classes of G.
  • There is some homomorphism on G for which N is the kernel.

The last condition accounts for some of the importance of normal subgroups; they are a way to internally classify all homomorphisms defined on a group. For example, a non-identity finite group is simple if and only if it is isomorphic to all of its non-identity homomorphic images, a finite group is perfect if and only if it has no normal subgroups of prime index, and a group is imperfect if and only if the derived subgroup is not supplemented by any proper normal subgroup.

Read more about this topic:  Normal Subgroup

Famous quotes containing the word definitions:

    Lord Byron is an exceedingly interesting person, and as such is it not to be regretted that he is a slave to the vilest and most vulgar prejudices, and as mad as the winds?
    There have been many definitions of beauty in art. What is it? Beauty is what the untrained eyes consider abominable.
    Edmond De Goncourt (1822–1896)

    The loosening, for some people, of rigid role definitions for men and women has shown that dads can be great at calming babies—if they take the time and make the effort to learn how. It’s that time and effort that not only teaches the dad how to calm the babies, but also turns him into a parent, just as the time and effort the mother puts into the babies turns her into a parent.
    Pamela Patrick Novotny (20th century)

    What I do not like about our definitions of genius is that there is in them nothing of the day of judgment, nothing of resounding through eternity and nothing of the footsteps of the Almighty.
    —G.C. (Georg Christoph)