Normal Space - Properties

Properties

The main significance of normal spaces lies in the fact that they admit "enough" continuous real-valued functions, as expressed by the following theorems valid for any normal space X.

Urysohn's lemma: If A and B are two disjoint closed subsets of X, then there exists a continuous function f from X to the real line R such that f(x) = 0 for all x in A and f(x) = 1 for all x in B. In fact, we can take the values of f to be entirely within the unit interval . (In fancier terms, disjoint closed sets are not only separated by neighbourhoods, but also separated by a function.)

More generally, the Tietze extension theorem: If A is a closed subset of X and f is a continuous function from A to R, then there exists a continuous function F: XR which extends f in the sense that F(x) = f(x) for all x in A.

If U is a locally finite open cover of a normal space X, then there is a partition of unity precisely subordinate to U. (This shows the relationship of normal spaces to paracompactness.)

In fact, any space that satisfies any one of these conditions must be normal.

A product of normal spaces is not necessarily normal. This fact was first proved by Robert Sorgenfrey. An example of this phenomenon is the Sorgenfrey plane. Also, a subset of a normal space need not be normal (i.e. not every normal Hausdorff space is a completely normal Hausdorff space), since every Tychonoff space is a subset of its Stone–Čech compactification (which is normal Hausdorff). A more explicit example is the Tychonoff plank.

Read more about this topic:  Normal Space

Famous quotes containing the word properties:

    The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.
    John Locke (1632–1704)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)