Normal Space

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

Read more about Normal Space:  Definitions, Examples of Normal Spaces, Examples of Non-normal Spaces, Properties, Relationships To Other Separation Axioms

Famous quotes containing the words normal and/or space:

    The basic thing nobody asks is why do people take drugs of any sort?... Why do we have these accessories to normal living to live? I mean, is there something wrong with society that’s making us so pressurized, that we cannot live without guarding ourselves against it?
    John Lennon (1940–1980)

    When Paul Bunyan’s loggers roofed an Oregon bunkhouse with shakes, fog was so thick that they shingled forty feet into space before discovering they had passed the last rafter.
    State of Oregon, U.S. public relief program (1935-1943)