Normal Space

In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.

Read more about Normal Space:  Definitions, Examples of Normal Spaces, Examples of Non-normal Spaces, Properties, Relationships To Other Separation Axioms

Famous quotes containing the words normal and/or space:

    You have promise, Mlle. Dubois, but you must choose between an operatic career and what is usually called “a normal life.” Though why it is so called is beyond me.
    Eric Taylor, Leroux, and Arthur Lubin. M. Villeneuve (Frank Puglia)

    It is not through space that I must seek my dignity, but through the management of my thought. I shall have no more if I possess worlds.
    Blaise Pascal (1623–1662)