In topology and related branches of mathematics, a normal space is a topological space X that satisfies Axiom T4: every two disjoint closed sets of X have disjoint open neighborhoods. A normal Hausdorff space is also called a T4 space. These conditions are examples of separation axioms and their further strengthenings define completely normal Hausdorff spaces, or T5 spaces, and perfectly normal Hausdorff spaces, or T6 spaces.
Read more about Normal Space: Definitions, Examples of Normal Spaces, Examples of Non-normal Spaces, Properties, Relationships To Other Separation Axioms
Famous quotes containing the words normal and/or space:
“Perhaps the feelings that we experience when we are in love represent a normal state. Being in love shows a person who he should be.”
—Anton Pavlovich Chekhov (18601904)
“A set of ideas, a point of view, a frame of reference is in space only an intersection, the state of affairs at some given moment in the consciousness of one man or many men, but in time it has evolving form, virtually organic extension. In time ideas can be thought of as sprouting, growing, maturing, bringing forth seed and dying like plants.”
—John Dos Passos (18961970)