Normal (geometry)
In geometry, an object such as a line or vector is called a normal to another object if they are perpendicular to each other. For example, in the two-dimensional case, the normal line to a curve at a given point is the line perpendicular to the tangent line to the curve at the point.
In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P. The word "normal" is also used as an adjective: a line normal to a plane, the normal component of a force, the normal vector, etc. The concept of normality generalizes to orthogonality.
The concept has been generalized to differential manifolds of arbitrary dimension embedded in a Euclidean space. The normal vector space or normal space of a manifold at a point P is the set of the vectors which are orthogonal to the tangent space at P. In the case of differential curves, the curvature vector is a normal vector of special interest.
The normal is often used in computer graphics to determine a surface's orientation toward a light source for flat shading, or the orientation of each of the corners (vertices) to mimic a curved surface with Phong shading.
Read more about Normal (geometry): Hypersurfaces in n-dimensional Space, Varieties Defined By Implicit Equations in n-dimensional Space, Uses, Normal in Geometric Optics
Famous quotes containing the word normal:
“Unlike the normal pattern, I know I have grown more liberal as Ive grown older. I have become more convinced that there is room for improvement in the world.”
—Walter Wellesley (Red)