Normal Distribution - Numerical Approximations For The Normal CDF

Numerical Approximations For The Normal CDF

The standard normal CDF is widely used in scientific and statistical computing. The values Φ(x) may be approximated very accurately by a variety of methods, such as numerical integration, Taylor series, asymptotic series and continued fractions. Different approximations are used depending on the desired level of accuracy.

  • Zelen & Severo (1964) give the approximation for Φ(x) for x > 0 with the absolute error |ε(x)| < 7.5·10−8 (algorithm 26.2.17):
     \Phi(x) = 1 - \phi(x)\left(b_1t + b_2t^2 + b_3t^3 + b_4t^4 + b_5t^5\right) + \varepsilon(x), \qquad t = \frac{1}{1+b_0x},
    where ϕ(x) is the standard normal PDF, and b0 = 0.2316419, b1 = 0.319381530, b2 = −0.356563782, b3 = 1.781477937, b4 = −1.821255978, b5 = 1.330274429.
  • Hart (1968) lists almost a hundred of rational function approximations for the erfc function. His algorithms vary in the degree of complexity and the resulting precision, with maximum absolute precision of 24 digits. An algorithm by West (2009) combines Hart's algorithm 5666 with a continued fraction approximation in the tail to provide a fast computation algorithm with a 16-digit precision.
  • Cody (1969) after recalling Hart68 solution is not suited for erf, gives a solution for both erf and erfc, with maximal relative error bound, via Rational Chebyshev Approximation.
  • Marsaglia (2004) suggested a simple algorithm based on the Taylor series expansion
     \Phi(x) = \frac12 + \phi(x)\left( x + \frac{x^3}{3} + \frac{x^5}{3\cdot5} + \frac{x^7}{3\cdot5\cdot7} + \frac{x^9}{3\cdot5\cdot7\cdot9} + \cdots \right)
    for calculating Φ(x) with arbitrary precision. The drawback of this algorithm is comparatively slow calculation time (for example it takes over 300 iterations to calculate the function with 16 digits of precision when x = 10).
  • The GNU Scientific Library calculates values of the standard normal CDF using Hart's algorithms and approximations with Chebyshev polynomials.

Read more about this topic:  Normal Distribution

Famous quotes containing the words numerical and/or normal:

    The terrible tabulation of the French statists brings every piece of whim and humor to be reducible also to exact numerical ratios. If one man in twenty thousand, or in thirty thousand, eats shoes, or marries his grandmother, then, in every twenty thousand, or thirty thousand, is found one man who eats shoes, or marries his grandmother.
    Ralph Waldo Emerson (1803–1882)

    Cant is always rather nauseating; but before we condemn political hypocrisy, let us remember that it is the tribute paid by men of leather to men of God, and that the acting of the part of someone better than oneself may actually commit one to a course of behaviour perceptibly less evil than what would be normal and natural in an avowed cynic.
    Aldous Huxley (1894–1963)