Definition
The simplest case of a normal distribution is known as the standard normal distribution, described by this probability density function:
The factor in this expression ensures that the total area under the curve ϕ(x) is equal to one, and 1/2 in the exponent makes the "width" of the curve (measured as half the distance between the inflection points) also equal to one. It is traditional in statistics to denote this function with the Greek letter ϕ (phi), whereas density functions for all other distributions are usually denoted with letters f or p. The alternative glyph φ is also used quite often, however within this article "φ" is reserved to denote characteristic functions.
Every normal distribution is the result of exponentiating a quadratic function (just as an exponential distribution results from exponentiating a linear function):
This yields the classic "bell curve" shape, provided that a < 0 so that the quadratic function is concave for x close to 0. f(x) > 0 everywhere. One can adjust a to control the "width" of the bell, then adjust b to move the central peak of the bell along the x-axis, and finally one must choose c such that (which is only possible when a < 0).
Rather than using a, b, and c, it is far more common to describe a normal distribution by its mean μ = − b/2a and variance σ2 = − 1/2a. Changing to these new parameters allows one to rewrite the probability density function in a convenient standard form:
For a standard normal distribution, μ = 0 and σ2 = 1. The last part of the equation above shows that any other normal distribution can be regarded as a version of the standard normal distribution that has been stretched horizontally by a factor σ and then translated rightward by a distance μ. Thus, μ specifies the position of the bell curve's central peak, and σ specifies the "width" of the bell curve.
The parameter μ is at the same time the mean, the median and the mode of the normal distribution. The parameter σ2 is called the variance; as for any random variable, it describes how concentrated the distribution is around its mean. The square root of σ2 is called the standard deviation and is the width of the density function.
The normal distribution is usually denoted by N(μ, σ2). Thus when a random variable X is distributed normally with mean μ and variance σ2, we write
Read more about this topic: Normal Distribution
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)