Non-Euclidean Geometry - Uncommon Properties

Uncommon Properties

Euclidean and non-Euclidean geometries naturally have many similar properties, namely those which do not depend upon the nature of parallelism. This commonality is the subject of absolute geometry (also called neutral geometry). However, the properties which distinguish one geometry from the others are the ones which have historically received the most attention.

Besides the behavior of lines with respect to a common perpendicular, mentioned in the introduction, we also have the following:

  • A Lambert quadrilateral is a quadrilateral which has three right angles. The fourth angle of a Lambert quadrilateral is acute if the geometry is hyperbolic, a right angle if the geometry is Euclidean or obtuse if the geometry is elliptic. Consequently, rectangles exist only in Euclidean geometry.
  • A Saccheri quadrilateral is a quadrilateral which has two sides of equal length, both perpendicular to a side called the base. The other two angles of a Saccheri quadrilateral are called the summit angles and they have equal measure. The summit angles of a Saccheri quadrilateral are acute if the geometry is hyperbolic, right angles if the geometry is Euclidean and obtuse angles if the geometry is elliptic.
  • The sum of the measures of the angles of any triangle is less than 180° if the geometry is hyperbolic, equal to 180° if the geometry is Euclidean, and greater than 180° if the geometry is elliptic. The defect of a triangle is the numerical value (180° - sum of the measures of the angles of the triangle). This result may also be stated as: the defect of triangles in hyperbolic geometry is positive, the defect of triangles in Euclidean geometry is zero, and the defect of triangles in elliptic geometry is negative.

Read more about this topic:  Non-Euclidean Geometry

Famous quotes containing the words uncommon and/or properties:

    Where youth and diffidence are united, it requires uncommon steadiness of reason to resist the attraction of being called the most charming girl in the world.
    Jane Austen (1775–1817)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)