Non-Euclidean Geometry

In mathematics, non-Euclidean geometry is a small set of geometries based on axioms closely related to those specifying Euclidean geometry. As Euclidean geometry lies at the intersection of metric geometry and affine geometry, non-Euclidean geometry arises when either the metric requirement is relaxed, or the parallel postulate is set aside. In the latter case one obtains hyperbolic geometry and elliptic geometry, the traditional non-Euclidean geometries. When the metric requirement is relaxed, then there are affine planes associated with the planar algebras which give rise to kinematic geometries that have also been called non-Euclidean geometry.

The essential difference between the metric geometries is the nature of parallel lines. Euclid's fifth postulate, the parallel postulate, is equivalent to Playfair's postulate, which states that, within a two-dimensional plane, for any given line and a point A, which is not on , there is exactly one line through A that does not intersect . In hyperbolic geometry, by contrast, there are infinitely many lines through A not intersecting , while in elliptic geometry, any line through A intersects (see the entries on hyperbolic geometry, elliptic geometry, and absolute geometry for more information).

Another way to describe the differences between these geometries is to consider two straight lines indefinitely extended in a two-dimensional plane that are both perpendicular to a third line:

  • In Euclidean geometry the lines remain at a constant distance from each other even if extended to infinity, and are known as parallels.
  • In hyperbolic geometry they "curve away" from each other, increasing in distance as one moves further from the points of intersection with the common perpendicular; these lines are often called ultraparallels.
  • In elliptic geometry the lines "curve toward" each other and intersect.

Read more about Non-Euclidean Geometry:  Axiomatic Basis of Non-Euclidean Geometry, Models of Non-Euclidean Geometry, Uncommon Properties, Importance, Planar Algebras, Kinematic Geometries, Fiction

Famous quotes containing the word geometry:

    I am present at the sowing of the seed of the world. With a geometry of sunbeams, the soul lays the foundations of nature.
    Ralph Waldo Emerson (1803–1882)