Noncommutative Rings
Further information: Radical of a ringFor noncommutative rings, there are several analogues of the nilradical. The lower nilradical (or Baer–McCoy radical, or prime radical) is the analogue of the radical of the zero ideal and is defined as the intersection of the prime ideals of the ring. The analogue of the set of all nilpotent elements is the upper nilradical and is defined as the ideal generated by all nil ideals of the ring, which is itself a nil ideal. The set of all nilpotent elements itself need not be an ideal (or even a subgroup), so the upper nilradical can be much smaller than this set. The Levitzki radical is in between and is defined as the largest locally nilpotent ideal. As in the commutative case, when the ring is artinian, the Levitzki radical is nilpotent and so is the unique largest nilpotent ideal. Indeed, if the ring is merely noetherian, then the lower, upper, and Levitzki radical are nilpotent and coincide, allowing the nilradical of any noetherian ring to be defined as the unique largest (left, right, or two-sided) nilpotent ideal of the ring.
Read more about this topic: Nilradical Of A Ring
Famous quotes containing the word rings:
“She has got rings on every finger,
Round one of them she have got three.
She have gold enough around her middle
To buy Northumberland that belongs to thee.”
—Unknown. Young Beichan (l. 6164)