Nilradical of A Ring

Nilradical Of A Ring

In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements of the ring.

In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways.

Read more about Nilradical Of A Ring:  Commutative Rings, Noncommutative Rings

Famous quotes containing the word ring:

    He will not idly dance at his work who has wood to cut and cord before nightfall in the short days of winter; but every stroke will be husbanded, and ring soberly through the wood; and so will the strokes of that scholar’s pen, which at evening record the story of the day, ring soberly, yet cheerily, on the ear of the reader, long after the echoes of his axe have died away.
    Henry David Thoreau (1817–1862)