Nilradical Of A Ring
In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements of the ring.
In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways.
Read more about Nilradical Of A Ring: Commutative Rings, Noncommutative Rings
Famous quotes containing the word ring:
“With this Ring I thee wed, with my body I thee worship, and with all my worldly goods I thee endow.”
—Book Of Common Prayer, The. Solemnization of Matrimony, Wedding, (1662)