Nilradical of A Ring

Nilradical Of A Ring

In algebra, the nilradical of a commutative ring is the ideal consisting of the nilpotent elements of the ring.

In the non-commutative ring case the same definition does not always work. This has resulted in several radicals generalizing the commutative case in distinct ways.

Read more about Nilradical Of A Ring:  Commutative Rings, Noncommutative Rings

Famous quotes containing the word ring:

    Good manners have much to do with the emotions. To make them ring true, one must feel them, not merely exhibit them.
    Amy Vanderbilt (1908–1974)