Nevanlinna Theory - First Fundamental Theorem

First Fundamental Theorem

Let aC, and define


\quad N(r,a,f) = N\left(r,\dfrac{1}{f-a}\right),
\quad m(r,a,f) = m\left(r,\dfrac{1}{f-a}\right).\,

For a = ∞, we set N(r,∞,f) = N(r,f), m(r,∞,f) = m(r,f).

The First Fundamental Theorem of Nevanlinna theory states that for every a in the Riemann sphere,

where the bounded term O(1) may depend on f and a. For non-constant meromorphic functions in the plane, T(r, f) tends to infinity as r tends to infinity, so the First Fundamental Theorem says that the sum N(r,a,f) + m(r,a,f), tends to infinity at the rate which is independent of a. The first Fundamental theorem is a simple consequence of Jensen's formula.

The characteristic function has the following properties of the degree:

\begin{array}{lcl}
T(r,fg)&\leq&T(r,f)+T(r,g)+O(1),\\
T(r,f+g)&\leq& T(r,f)+T(r,g)+O(1),\\
T(r,1/f)&=&T(r,f)+O(1),\\
T(r,f^m)&=&mT(r,f)+O(1), \,
\end{array}

where m is a natural number. The bounded term O(1) is negligible when T(r,f) tends to infinity. These algebraic properties are easily obtained from Nevanlinna's definition and Jensen's formula.

Read more about this topic:  Nevanlinna Theory

Famous quotes containing the words fundamental and/or theorem:

    It’s important to remember that children who are facing a frightening situation have three fundamental concerns: Am I safe? Are you, the people who care for me, safe? How will this affect my daily life?
    Lawrence Kutner (20th century)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)