Defect Relation
This is one of the main corollaries from the Second Fundamental Theorem. The defect of a meromorphic function at the point a is defined by the formula
By the First Fundamental Theorem, 0 ≤ δ(a,f) ≤ 1, if T(r,f) tends to infinity (which is always the case for non-constant functions meromorphic in the plane). The points a for which δ(a,f) > 0 are called deficient values. The Second Fundamental Theorem implies that the set of deficient values of a function meromorphic in the plane is at most countable and the following relation holds:
where the summation is over all deficient values. This can be considered as a generalization of Picard's theorem. Many other Picard-type theorems can be derived from the Second Fundamental Theorem.
As another corollary from the Second Fundamental Theorem, one can obtain that
which generalizes the fact that a rational function of degree d has 2d − 2 < 2d critical points.
Read more about this topic: Nevanlinna Theory
Famous quotes containing the words defect and/or relation:
“It is to be lamented that the principle of national has had very little nourishment in our country, and, instead, has given place to sectional or state partialities. What more promising method for remedying this defect than by uniting American women of every state and every section in a common effort for our whole country.”
—Catherine E. Beecher (18001878)
“There is a certain standard of grace and beauty which consists in a certain relation between our nature, such as it is, weak or strong, and the thing which pleases us. Whatever is formed according to this standard pleases us, be it house, song, discourse, verse, prose, woman, birds, rivers, trees, room, dress, and so on. Whatever is not made according to this standard displeases those who have good taste.”
—Blaise Pascal (16231662)