In electrochemistry, the Nernst equation is an equation that can be used (in conjunction with other information) to determine the equilibrium reduction potential of a half-cell in an electrochemical cell. It can also be used to determine the total voltage (electromotive force) for a full electrochemical cell. It is named after the German physical chemist who first formulated it, Walther Nernst.
The Nernst equation gives a formula that relates the numerical values of the concentration gradient to the electric gradient that balances it. For example, if a concentration gradient was established by dissolving KCl in half of a divided vessel that was originally full of H2O, and then a membrane permeable to K+ ions was introduced between the two halves—empirically, an equilibrium situation would arise where the chemical concentration gradient (that would normally cause ions to move from the region of high concentration to the region of low concentration) could be balanced by an electrical gradient that opposes the movement of charge.
Read more about Nernst Equation: Expression, Nernst Potential, Relation To Equilibrium, Limitations
Famous quotes containing the word equation:
“A nation fights well in proportion to the amount of men and materials it has. And the other equation is that the individual soldier in that army is a more effective soldier the poorer his standard of living has been in the past.”
—Norman Mailer (b. 1923)