Multipole Expansion - General Mathematical Properties

General Mathematical Properties

Mathematically, multipole expansions are related to the underlying rotational symmetry of the physical laws and their associated differential equations. Even though the source terms (such as the masses, charges, or currents) may not be symmetrical, one can expand them in terms of irreducible representations of the rotational symmetry group, which leads to spherical harmonics and related sets of orthogonal functions. One uses the technique of separation of variables to extract the corresponding solutions for the radial dependencies.

Read more about this topic:  Multipole Expansion

Famous quotes containing the words general, mathematical and/or properties:

    An aristocratic culture does not advertise its emotions. In its forms of expression it is sober and reserved. Its general attitude is stoic.
    Johan Huizinga (1872–1945)

    The circumstances of human society are too complicated to be submitted to the rigour of mathematical calculation.
    Marquis De Custine (1790–1857)

    A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.
    Ralph Waldo Emerson (1803–1882)