Multinomial Distribution

In probability theory, the multinomial distribution is a generalization of the binomial distribution.

The binomial distribution is the probability distribution of the number of "successes" in n independent Bernoulli trials, with the same probability of "success" on each trial. In a multinomial distribution, the analog of the Bernoulli distribution is the categorical distribution, where each trial results in exactly one of some fixed finite number k of possible outcomes, with probabilities p1, ..., pk (so that pi ≥ 0 for i = 1, ..., k and ), and there are n independent trials. Then let the random variables Xi indicate the number of times outcome number i was observed over the n trials. The vector X = (X1, ..., Xk) follows a multinomial distribution with parameters n and p, where p = (p1, ..., pk).

Note that, in some fields, such as natural language processing, the categorical and multinomial distributions are conflated, and it is common to speak of a "multinomial distribution" when a categorical distribution is actually meant. This stems from the fact that it is sometimes convenient to express the outcome of a categorical distribution as a "1-of-K" vector (a vector with one element containing a 1 and all other elements containing a 0) rather than as an integer in the range ; in this form, a categorical distribution is equivalent to a multinomial distribution over a single observation.

Read more about Multinomial Distribution:  Properties, Example, Sampling From A Multinomial Distribution, To Simulate A Multinomial Distribution, Related Distributions

Famous quotes containing the word distribution:

    My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.
    Rutherford Birchard Hayes (1822–1893)