Dirichlet Distribution

In probability and statistics, the Dirichlet distribution (after Johann Peter Gustav Lejeune Dirichlet), often denoted, is a family of continuous multivariate probability distributions parametrized by a vector of positive reals. It is the multivariate generalization of the beta distribution. Dirichlet distributions are very often used as prior distributions in Bayesian statistics, and in fact the Dirichlet distribution is the conjugate prior of the categorical distribution and multinomial distribution. That is, its probability density function returns the belief that the probabilities of K rival events are given that each event has been observed times.

The infinite-dimensional generalization of the Dirichlet distribution is the Dirichlet process.

Read more about Dirichlet Distribution:  Probability Density Function, Related Distributions, Applications

Famous quotes containing the word distribution:

    The man who pretends that the distribution of income in this country reflects the distribution of ability or character is an ignoramus. The man who says that it could by any possible political device be made to do so is an unpractical visionary. But the man who says that it ought to do so is something worse than an ignoramous and more disastrous than a visionary: he is, in the profoundest Scriptural sense of the word, a fool.
    George Bernard Shaw (1856–1950)