Free Strict Monoidal Category
For every category C, the free strict monoidal category Σ(C) can be constructed as follows:
- its objects are lists (finite sequences) A1, ..., An of objects of C;
- there are arrows between two objects A1, ..., Am and B1, ..., Bn only if m = n, and then the arrows are lists (finite sequences) of arrows f1: A1 → B1, ..., fn: An → Bn of C;
- the tensor product of two objects A1, ..., An and B1, ..., Bm is the concatenation A1, ..., An, B1, ..., Bm of the two lists, and, similarly, the tensor product of two morphisms is given by the concatenation of lists.
This operation Σ mapping category C to Σ(C) can be extended to a strict 2-monad on Cat.
Read more about this topic: Monoidal Category
Famous quotes containing the words free, strict and/or category:
“A free spirit takes liberties even with liberty itself.”
—Francis Picabia (18781953)
“History creates comprehensibility primarily by arranging facts meaningfully and only in a very limited sense by establishing strict causal connections.”
—Johan Huizinga (18721945)
“The truth is, no matter how trying they become, babies two and under dont have the ability to make moral choices, so they cant be bad. That category only exists in the adult mind.”
—Anne Cassidy (20th century)
Related Phrases
Related Words