Free Strict Monoidal Category
For every category C, the free strict monoidal category Σ(C) can be constructed as follows:
- its objects are lists (finite sequences) A1, ..., An of objects of C;
- there are arrows between two objects A1, ..., Am and B1, ..., Bn only if m = n, and then the arrows are lists (finite sequences) of arrows f1: A1 → B1, ..., fn: An → Bn of C;
- the tensor product of two objects A1, ..., An and B1, ..., Bm is the concatenation A1, ..., An, B1, ..., Bm of the two lists, and, similarly, the tensor product of two morphisms is given by the concatenation of lists.
This operation Σ mapping category C to Σ(C) can be extended to a strict 2-monad on Cat.
Read more about this topic: Monoidal Category
Famous quotes containing the words free, strict and/or category:
“A great many will find fault in the resolution that the negro shall be free and equal, because our equal not every human being can be; but free every human being has a right to be. He can only be equal in his rights.”
—Mrs. Chalkstone, U.S. suffragist. As quoted in History of Woman Suffrage, vol. 2, ch. 16, by Elizabeth Cady Stanton, Susan B. Anthony, and Matilda Joslyn Gage (1882)
“In a universe that is all gradations of matter, from gross to fine to finer, so that we end up with everything we are composed of in a lattice, a grid, a mesh, a mist, where particles or movements so small we cannot observe them are held in a strict and accurate web, that is nevertheless nonexistent to the eyes we use for ordinary livingin this system of fine and finer, where then is the substance of a thought?”
—Doris Lessing (b. 1919)
“I see no reason for calling my work poetry except that there is no other category in which to put it.”
—Marianne Moore (18871972)