Relation To Other Functions
Related to the moment-generating function are a number of other transforms that are common in probability theory:
- characteristic function
- The characteristic function is related to the moment-generating function via the characteristic function is the moment-generating function of iX or the moment generating function of X evaluated on the imaginary axis. This function can also be viewed as the Fourier transform of the probability density function, which can therefore be deduced from it by inverse Fourier transform.
- cumulant-generating function
- The cumulant-generating function is defined as the logarithm of the moment-generating function; some instead define the cumulant-generating function as the logarithm of the characteristic function, while others call this latter the second cumulant-generating function.
- probability-generating function
- The probability-generating function is defined as This immediately implies that
Read more about this topic: Moment-generating Function
Famous quotes containing the words relation to, relation and/or functions:
“The whole point of Camp is to dethrone the serious. Camp is playful, anti-serious. More precisely, Camp involves a new, more complex relation to the serious. One can be serious about the frivolous, frivolous about the serious.”
—Susan Sontag (b. 1933)
“We shall never resolve the enigma of the relation between the negative foundations of greatness and that greatness itself.”
—Jean Baudrillard (b. 1929)
“Those things which now most engage the attention of men, as politics and the daily routine, are, it is true, vital functions of human society, but should be unconsciously performed, like the corresponding functions of the physical body.”
—Henry David Thoreau (18171862)