Modern Evolutionary Synthesis - The Modern Synthesis

The Modern Synthesis

Theodosius Dobzhansky, a Ukrainian emigrant, who had been a postdoctoral worker in Morgan's fruit fly lab, was one of the first to apply genetics to natural populations. He worked mostly with Drosophila pseudoobscura. He says pointedly: "Russia has a variety of climates from the Arctic to sub-tropical... Exclusively laboratory workers who neither possess nor wish to have any knowledge of living beings in nature were and are in a minority." Not surprisingly, there were other Russian geneticists with similar ideas, though for some time their work was known to only a few in the West. His 1937 work Genetics and the Origin of Species was a key step in bridging the gap between population geneticists and field naturalists. It presented the conclusions reached by Fisher, Haldane, and especially Wright in their highly mathematical papers in a form that was easily accessible to others. It also emphasized that real world populations had far more genetic variability than the early population geneticists had assumed in their models, and that genetically distinct sub-populations were important. Dobzhansky argued that natural selection worked to maintain genetic diversity as well as driving change. Dobzhansky had been influenced by his exposure in the 1920s to the work of a Russian geneticist named Sergei Chetverikov who had looked at the role of recessive genes in maintaining a reservoir of genetic variability in a population before his work was shut down by the rise of Lysenkoism in the Soviet Union.

Edmund Brisco Ford's work complemented that of Dobzhansky. It was as a result of Ford's work, as well as his own, that Dobzhansky changed the emphasis in the third edition of his famous text from drift to selection. Ford was an experimental naturalist who wanted to test natural selection in nature. He virtually invented the field of research known as ecological genetics. His work on natural selection in wild populations of butterflies and moths was the first to show that predictions made by R.A. Fisher were correct. He was the first to describe and define genetic polymorphism, and to predict that human blood group polymorphisms might be maintained in the population by providing some protection against disease.

Ernst Mayr's key contribution to the synthesis was Systematics and the Origin of Species, published in 1942. Mayr emphasized the importance of allopatric speciation, where geographically isolated sub-populations diverge so far that reproductive isolation occurs. He was skeptical of the reality of sympatric speciation believing that geographical isolation was a prerequisite for building up intrinsic (reproductive) isolating mechanisms. Mayr also introduced the biological species concept that defined a species as a group of interbreeding or potentially interbreeding populations that were reproductively isolated from all other populations. Before he left Germany for the United States in 1930, Mayr had been influenced by the work of German biologist Bernhard Rensch. In the 1920s Rensch, who like Mayr did field work in Indonesia, analyzed the geographic distribution of polytypic species and complexes of closely related species paying particular attention to how variations between different populations correlated with local environmental factors such as differences in climate. In 1947, Rensch published Neuere Probleme der Abstammungslehre: die Transspezifische Evolution (English translation 1959: Evolution above the Species level). This looked at how the same evolutionary mechanisms involved in speciation might be extended to explain the origins of the differences between the higher level taxa. His writings contributed to the rapid acceptance of the synthesis in Germany.

George Gaylord Simpson was responsible for showing that the modern synthesis was compatible with paleontology in his book Tempo and Mode in Evolution published in 1944. Simpson's work was crucial because so many paleontologists had disagreed, in some cases vigorously, with the idea that natural selection was the main mechanism of evolution. It showed that the trends of linear progression (in for example the evolution of the horse) that earlier paleontologists had used as support for neo-Lamarckism and orthogenesis did not hold up under careful examination. Instead the fossil record was consistent with the irregular, branching, and non-directional pattern predicted by the modern synthesis.

The botanist G. Ledyard Stebbins was another major contributor to the synthesis. His major work, Variation and Evolution in Plants, was published in 1950. It extended the synthesis to encompass botany including the important effects of hybridization and polyploidy in some kinds of plants.

Read more about this topic:  Modern Evolutionary Synthesis

Famous quotes containing the words modern and/or synthesis:

    He was naturally so sensitive, and so kind. But he had the insidious modern disease of tolerance. He must tolerate everything, even a thing that revolted him.
    —D.H. (David Herbert)

    Our art is the finest, the noblest, the most suggestive, for it is the synthesis of all the arts. Sculpture, painting, literature, elocution, architecture, and music are its natural tools. But while it needs all of those artistic manifestations in order to be its whole self, it asks of its priest or priestess one indispensable virtue: “faith.”
    Sarah Bernhardt (1845–1923)