Mixture Model - Parameter Estimation and System Identification

Parameter Estimation and System Identification

Parametric mixture models are often used when we know the distribution Y and we can sample from X, but we would like to determine the ai and θi values. Such situations can arise in studies in which we sample from a population that is composed of several distinct subpopulations.

It is common to think of probability mixture modeling as a missing data problem. One way to understand this is to assume that the data points under consideration have "membership" in one of the distributions we are using to model the data. When we start, this membership is unknown, or missing. The job of estimation is to devise appropriate parameters for the model functions we choose, with the connection to the data points being represented as their membership in the individual model distributions.

A variety of approaches to the problem of mixture decomposition have been proposed, many of which focus on maximum likelihood methods such as expectation maximization (EM) or maximum a posteriori estimation (MAP). Generally these methods consider separately the question of parameter estimation and system identification, that is to say a distinction is made between the determination of the number and functional form of components within a mixture and the estimation of the corresponding parameter values. Some notable departures are the graphical methods as outlined in Tarter and Lock and more recently minimum message length (MML) techniques such as Figueiredo and Jain and to some extent the moment matching pattern analysis routines suggested by McWilliam and Loh (2009).

Read more about this topic:  Mixture Model

Famous quotes containing the words estimation and/or system:

    A higher class, in the estimation and love of this city- building, market-going race of mankind, are the poets, who, from the intellectual kingdom, feed the thought and imagination with ideas and pictures which raise men out of the world of corn and money, and console them for the short-comings of the day, and the meanness of labor and traffic.
    Ralph Waldo Emerson (1803–1882)

    A religion so cheerless, a philosophy so sorrowful, could never have succeeded with the masses of mankind if presented only as a system of metaphysics. Buddhism owed its success to its catholic spirit and its beautiful morality.
    W. Winwood Reade (1838–1875)