Mixture Model

In statistics, a mixture model is a probabilistic model for representing the presence of subpopulations within an overall population, without requiring that an observed data-set should identify the sub-population to which an individual observation belongs. Formally a mixture model corresponds to the mixture distribution that represents the probability distribution of observations in the overall population. However, while problems associated with "mixture distributions" relate to deriving the properties of the overall population from those of the sub-populations, "mixture models" are used to make statistical inferences about the properties of the sub-populations given only observations on the pooled population, without sub-population-identity information.

Some ways of implementing mixture models involve steps that attribute postulated sub-population-identities to individual observations (or weights towards such sub-populations), in which case these can be regarded as types of unsupervised learning or clustering procedures. However not all inference procedures involve such steps.

Mixture models should not be confused with models for compositional data, i.e., data whose components are constrained to sum to a constant value (1, 100%, etc.).

Read more about Mixture Model:  Identifiability, Parameter Estimation and System Identification, Extensions, History

Famous quotes containing the words mixture and/or model:

    We are all such accidents. We do not make up history and culture. We simply appear, not by our own choice. We make what we can of our condition with the means available. We must accept the mixture as we find it—the impurity of it, the tragedy of it, the hope of it.
    Saul Bellow (b. 1915)

    The playing adult steps sideward into another reality; the playing child advances forward to new stages of mastery....Child’s play is the infantile form of the human ability to deal with experience by creating model situations and to master reality by experiment and planning.
    Erik H. Erikson (20th century)