There is also a notion of the essential Minkowski sum +e of two subsets of Euclidean space. Note that the usual Minkowski sum can be written as
Thus, the essential Minkowski sum is defined by
where μ denotes the n-dimensional Lebesgue measure. The reason for the term "essential" is the following property of indicator functions: while
it can be seen that
where "ess sup" denotes the essential supremum.
Read more about this topic: Minkowski Addition
Famous quotes containing the words essential and/or sum:
“Caprice, independence and rebellion, which are opposed to the social order, are essential to the good health of an ethnic group. We shall measure the good health of this group by the number of its delinquents. Nothing is more immobilizing than the spirit of deference.”
—Jean Dubuffet (19011985)
“To sum up our most serious objections in a few words, we should say that Carlyle indicates a depthand we mean not impliedly, but distinctlywhich he neglects to fathom.”
—Henry David Thoreau (18171862)