Minkowski Addition - Essential Minkowski Sum

There is also a notion of the essential Minkowski sum +e of two subsets of Euclidean space. Note that the usual Minkowski sum can be written as

Thus, the essential Minkowski sum is defined by

where μ denotes the n-dimensional Lebesgue measure. The reason for the term "essential" is the following property of indicator functions: while

it can be seen that

where "ess sup" denotes the essential supremum.


Read more about this topic:  Minkowski Addition

Famous quotes containing the words essential and/or sum:

    There are of course people who are more important than others in that they have more importance in the world but this is not essential and it ceases to be. I have no sense of difference in this respect because every human being comprises the combination form.
    Gertrude Stein (1874–1946)

    No, the five hundred was the sum they named
    To pay the doctor’s bill and tide me over.
    It’s that or fight, and I don’t want to fight
    I just want to get settled in my life....
    Robert Frost (1874–1963)