Convex Set

Convex Set

In Euclidean space, an object is convex if for every pair of points within the object, every point on the straight line segment that joins them is also within the object. For example, a solid cube is convex, but anything that is hollow or has a dent in it, for example, a crescent shape, is not convex.

The notion can be generalized to other spaces as described below.

Read more about Convex Set:  In Vector Spaces, Properties, Generalizations and Extensions For Convexity

Famous quotes containing the word set:

    Nothing in medieval dress distinguished the child from the adult. In the seventeenth century, however, the child, or at least the child of quality, whether noble or middle-class, ceased to be dressed like the grown-up. This is the essential point: henceforth he had an outfit reserved for his age group, which set him apart from the adults. These can be seen from the first glance at any of the numerous child portraits painted at the beginning of the seventeenth century.
    Philippe Ariés (20th century)