The Dynamical Evolution of Meteoroid Streams
Shortly after Whipple predicted that dust particles travelled at low speeds relative to the comet, Milos Plavec was the first to offer the idea of a dust trail, when he calculated how meteroids, once freed from the comet, would drift mostly in front of or behind the comet after completing one orbit. The effect is simple orbital mechanics – the material drifts only a little laterally away from the comet while drifting ahead or behind the comet because some particles make a wider orbit than others. These dust trails are sometimes observed in comet images taken at mid infrared wavelengths (heat radiation), where dust particles from the previous return to the Sun are spread along the orbit of the comet (see figures).
The gravitational pull of the planets determines where the dust trail would pass by Earth orbit, much like a gardener directing a hose to water a distant plant. Most years, those trails would miss the Earth altogether, but in some years the Earth is showered by meteors. This effect was first demonstrated from observations of the 1995 alpha Monocerotids, and from earlier not widely known identifications of past earth storms.
In the 1890s, Irish astronomer George Johnstone Stoney (1826–1911) and British astronomer Arthur Matthew Weld Downing (1850–1917), were the first to attempt to calculate the position of the dust at Earth's orbit. They studied the dust ejected in 1866 by comet 55P/Tempel-Tuttle in advance of the anticipated Leonid shower return of 1898 and 1899. Meteor storms were anticipated, but the final calculations showed that most of the dust would be far inside of Earth's orbit. The same results were independently arrived at by Adolf Berberich of the Königliches Astronomisches Rechen Institut (Royal Astronomical Computation Institute) in Berlin, Germany. Although the absence of meteor storms that season confirmed the calculations, the advance of much better computing tools was needed to arrive at reliable predictions.
In 1985, E. D. Kondrat'eva and E. A. Reznikov of Kazan State University first correctly identified the years when dust was released which was responsible for several past Leonid meteor storms. In anticipation of the 1999 Leonid storm, Robert H. McNaught David Asher, and Finland's Esko Lyytinen were the first to apply this method in the West. Peter Jenniskens has published predictions for future dust trail encounters, resulting in meteor storms or meteor outbursts for the next 50 years.
Over longer periods of time, the dust trails can evolve in complicated ways. For example, the orbits of some repeating comets, and meteoroids leaving them, are in resonant orbits with Jupiter or one of the other large planets – so many revolutions of one will equal another number of revolutions of the other. So over time since Jupiter will have the same relative position intermittently and it will tend to pull meteoroids into keeping that relative position. This creates a shower component called a filament.
A second effect is a close encounter with a planet. When the meteoroids pass by Earth, some are accelerated (making wider orbits around the Sun), others are decelerated (making shorter orbits), resulting in gaps in the dust trail in the next return (like opening a curtain, with grains piling up at the beginning and end of the gap). Also, Jupiter's perturbation can change sections of the dust trail dramatically, especially for short period comets, when the grains approach the big planet at their furthest point along the orbit around the Sun, moving most slowly. As a result, the trail has a clumping, a braiding or a tangling of crescents, of each individual release of material.
The third effect is that of radiation pressure which will push less massive particles into orbits further from the sun – while more massive objects (responsible for bolides or fireballs) will tend to be affected less by radiation pressure. This makes some dust trail encounters rich in bright meteors, others rich in faint meteors. Over time, these effects disperse the meteoroids and create a broader stream. The meteors we see from these streams are part of annual showers, because Earth encounters those streams every year at much the same rate.
When the meteoroids collide with other meteoroids in the zodiacal cloud, they lose their stream association and become part of the "sporadic meteors" background. Long since dispersed from any stream or trail, they form isolated meteors, not a part of any shower. These random meteors will not appear to come from the radiant of the main shower.
Read more about this topic: Meteor Shower
Famous quotes containing the words evolution and/or streams:
“The more specific idea of evolution now reached isa change from an indefinite, incoherent homogeneity to a definite, coherent heterogeneity, accompanying the dissipation of motion and integration of matter.”
—Herbert Spencer (18201903)
“So hills and valleys into singing break;
And though poor stones have neither speech nor tongue,
While active winds and streams both run and speak,
Yet stones are deep in admiration.
Thus praise and prayer here beneath the Sun
Make lesser mornings when the great are done.”
—Henry Vaughan (16221695)