Special Measurable Functions
- If (X, Σ) and (Y, Τ) are Borel spaces, a measurable function f: (X, Σ) → (Y, Τ) is also called a Borel function. Continuous functions are Borel functions but not all Borel functions are continuous. However, a measurable function is nearly a continuous function; see Luzin's theorem. If a Borel function happens to be a section of some map, it is called a Borel section.
- A Lebesgue measurable function is a measurable function, where is the sigma algebra of Lebesgue measurable sets, and is the Borel algebra on the complex numbers C. Lebesgue measurable functions are of interest in mathematical analysis because they can be integrated.
- Random variables are by definition measurable functions defined on sample spaces.
Read more about this topic: Measurable Function
Famous quotes containing the words special and/or functions:
“People generally will soon understand that writers should be judged, not according to rules and species, which are contrary to nature and art, but according to the immutable principles of the art of composition, and the special laws of their individual temperaments.”
—Victor Hugo (18021885)
“Let us stop being afraid. Of our own thoughts, our own minds. Of madness, our own or others. Stop being afraid of the mind itself, its astonishing functions and fandangos, its complications and simplifications, the wonderful operation of its machinerymore wonderful because it is not machinery at all or predictable.”
—Kate Millett (b. 1934)
Related Subjects
Related Phrases
Related Words