Non-measurable Functions
Real-valued functions encountered in applications tend to be measurable; however, it is not difficult to find non-measurable functions.
- So long as there are non-measurable sets in a measure space, there are non-measurable functions from that space. If (X, Σ) is some measurable space and A ⊂ X is a non-measurable set, i.e. if A ∉ Σ, then the indicator function 1A: (X, Σ) → R is non-measurable (where R is equipped with the Borel algebra as usual), since the preimage of the measurable set {1} is the non-measurable set A. Here 1A is given by
- Any non-constant function can be made non-measurable by equipping the domain and range with appropriate σ-algebras. If f: X → R is an arbitrary non-constant, real-valued function, then f is non-measurable if X is equipped with the indiscrete algebra Σ = {0, X}, since the preimage of any point in the range is some proper, nonempty subset of X, and therefore does not lie in Σ.
Read more about this topic: Measurable Function
Famous quotes containing the word functions:
“If photography is allowed to stand in for art in some of its functions it will soon supplant or corrupt it completely thanks to the natural support it will find in the stupidity of the multitude. It must return to its real task, which is to be the servant of the sciences and the arts, but the very humble servant, like printing and shorthand which have neither created nor supplanted literature.”
—Charles Baudelaire (18211867)
Related Subjects
Related Phrases
Related Words