Properties
Let G be a compact, connected Lie group and let be the Lie algebra of G.
- A maximal torus in G is a maximal abelian subgroup, but the converse need not hold.
- The maximal tori in G are exactly the Lie subgroups corresponding to the maximal abelian, diagonally acting subalgebras of (cf. Cartan subalgebra)
- Given a maximal torus T in G, every element g ∈ G is conjugate to an element in T.
- Since the conjugate of a maximal torus is a maximal torus, every element of G lies in some maximal torus.
- All maximal tori in G are conjugate. Therefore, the maximal tori form a single conjugacy class among the subgroups of G.
- It follows that the dimensions of all maximal tori are the same. This dimension is the rank of G.
- If G has dimension n and rank r then n − r is even.
Read more about this topic: Maximal Torus
Famous quotes containing the word properties:
“The reason why men enter into society, is the preservation of their property; and the end why they choose and authorize a legislative, is, that there may be laws made, and rules set, as guards and fences to the properties of all the members of the society: to limit the power, and moderate the dominion, of every part and member of the society.”
—John Locke (16321704)
“A drop of water has the properties of the sea, but cannot exhibit a storm. There is beauty of a concert, as well as of a flute; strength of a host, as well as of a hero.”
—Ralph Waldo Emerson (18031882)
Related Phrases
Related Words