Mathematical Proof - History and Etymology

History and Etymology

See also: History of logic

The word "proof" comes from the Latin probare meaning "to test". Related modern words are the English "probe", "probation", and "probability", the Spanish probar (to smell or taste, or (lesser use) touch or test), Italian provare (to try), and the German probieren (to try). The early use of "probity" was in the presentation of legal evidence. A person of authority, such as a nobleman, was said to have probity, whereby the evidence was by his relative authority, which outweighed empirical testimony.

Plausibility arguments using heuristic devices such as pictures and analogies preceded strict mathematical proof. It is probable that the idea of demonstrating a conclusion first arose in connection with geometry, which originally meant the same as "land measurement". The development of mathematical proof is primarily the product of ancient Greek mathematics, and one of its greatest achievements. Thales (624–546 BCE) proved some theorems in geometry. Eudoxus (408–355 BCE) and Theaetetus (417–369 BCE) formulated theorems but did not prove them. Aristotle (384–322 BCE) said definitions should describe the concept being defined in terms of other concepts already known. Mathematical proofs were revolutionized by Euclid (300 BCE), who introduced the axiomatic method still in use today, starting with undefined terms and axioms (propositions regarding the undefined terms assumed to be self-evidently true from the Greek "axios" meaning "something worthy"), and used these to prove theorems using deductive logic. His book, the Elements, was read by anyone who was considered educated in the West until the middle of the 20th century. In addition to the familiar theorems of geometry, such as the Pythagorean theorem, the Elements includes a proof that the square root of two is irrational and that there are infinitely many prime numbers.

Further advances took place in medieval Islamic mathematics. While earlier Greek proofs were largely geometric demonstrations, the development of arithmetic and algebra by Islamic mathematicians allowed more general proofs that no longer depended on geometry. In the 10th century CE, the Iraqi mathematician Al-Hashimi provided general proofs for numbers (rather than geometric demonstrations) as he considered multiplication, division, etc. for "lines." He used this method to provide a proof of the existence of irrational numbers. An inductive proof for arithmetic sequences was introduced in the Al-Fakhri (1000) by Al-Karaji, who used it to prove the binomial theorem and properties of Pascal's triangle. Alhazen also developed the method of proof by contradiction, as the first attempt at proving the Euclidean parallel postulate.

Modern proof theory treats proofs as inductively defined data structures. There is no longer an assumption that axioms are "true" in any sense; this allows for parallel mathematical theories built on alternate sets of axioms (see Axiomatic set theory and Non-Euclidean geometry for examples).

Read more about this topic:  Mathematical Proof

Famous quotes containing the words history and/or etymology:

    History is the present. That’s why every generation writes it anew. But what most people think of as history is its end product, myth.
    —E.L. (Edgar Lawrence)

    Semantically, taste is rich and confusing, its etymology as odd and interesting as that of “style.” But while style—deriving from the stylus or pointed rod which Roman scribes used to make marks on wax tablets—suggests activity, taste is more passive.... Etymologically, the word we use derives from the Old French, meaning touch or feel, a sense that is preserved in the current Italian word for a keyboard, tastiera.
    Stephen Bayley, British historian, art critic. “Taste: The Story of an Idea,” Taste: The Secret Meaning of Things, Random House (1991)