Mathematical Proof
In mathematics, a proof is a demonstration that if some fundamental statements (axioms) are assumed to be true, then some mathematical statement is necessarily true. Proofs are obtained from deductive reasoning, rather than from inductive or empirical arguments; a proof must demonstrate that a statement is always true (occasionally by listing all possible cases and showing that it holds in each), rather than enumerate many confirmatory cases. An unproven proposition that is believed to be true is known as a conjecture.
Proofs employ logic but usually include some amount of natural language which usually admits some ambiguity. In fact, the vast majority of proofs in written mathematics can be considered as applications of rigorous informal logic. Purely formal proofs, written in symbolic language instead of natural language, are considered in proof theory. The distinction between formal and informal proofs has led to much examination of current and historical mathematical practice, quasi-empiricism in mathematics, and so-called folk mathematics (in both senses of that term). The philosophy of mathematics is concerned with the role of language and logic in proofs, and mathematics as a language.
Read more about Mathematical Proof: History and Etymology, Nature and Purpose, Undecidable Statements, Heuristic Mathematics and Experimental Mathematics, Ending A Proof
Famous quotes containing the words mathematical and/or proof:
“It is by a mathematical point only that we are wise, as the sailor or the fugitive slave keeps the polestar in his eye; but that is sufficient guidance for all our life. We may not arrive at our port within a calculable period, but we would preserve the true course.”
—Henry David Thoreau (18171862)
“Talk shows are proof that conversation is dead.”
—Mason Cooley (b. 1927)