Many-valued Logic - Relation To Classical Logic

Relation To Classical Logic

Logics are usually systems intended to codify rules for preserving some semantic property of propositions across transformations. In classical logic, this property is "truth." In a valid argument, the truth of the derived proposition is guaranteed if the premises are jointly true, because the application of valid steps preserves the property. However, that property doesn't have to be that of "truth"; instead, it can be some other concept.

Multi-valued logics are intended to preserve the property of designationhood (or being designated). Since there are more than two truth values, rules of inference may be intended to preserve more than just whichever corresponds (in the relevant sense) to truth. For example, in a three-valued logic, sometimes the two greatest truth-values (when they are represented as e.g. positive integers) are designated and the rules of inference preserve these values. Precisely, a valid argument will be such that the value of the premises taken jointly will always be less than or equal to the conclusion.

For example, the preserved property could be justification, the foundational concept of intuitionistic logic. Thus, a proposition is not true or false; instead, it is justified or flawed. A key difference between justification and truth, in this case, is that the law of excluded middle doesn't hold: a proposition that is not flawed is not necessarily justified; instead, it's only not proven that it's flawed. The key difference is the determinacy of the preserved property: One may prove that P is justified, that P is flawed, or be unable to prove either. A valid argument preserves justification across transformations, so a proposition derived from justified propositions is still justified. However, there are proofs in classical logic that depend upon the law of excluded middle; since that law is not usable under this scheme, there are propositions that cannot be proven that way.

Read more about this topic:  Many-valued Logic

Famous quotes containing the words relation to, relation, classical and/or logic:

    ... a worker was seldom so much annoyed by what he got as by what he got in relation to his fellow workers.
    Mary Barnett Gilson (1877–?)

    When needs and means become abstract in quality, abstraction is also a character of the reciprocal relation of individuals to one another. This abstract character, universality, is the character of being recognized and is the moment which makes concrete, i.e. social, the isolated and abstract needs and their ways and means of satisfaction.
    Georg Wilhelm Friedrich Hegel (1770–1831)

    Culture is a sham if it is only a sort of Gothic front put on an iron building—like Tower Bridge—or a classical front put on a steel frame—like the Daily Telegraph building in Fleet Street. Culture, if it is to be a real thing and a holy thing, must be the product of what we actually do for a living—not something added, like sugar on a pill.
    Eric Gill (1882–1940)

    Our argument ... will result, not upon logic by itself—though without logic we should never have got to this point—but upon the fortunate contingent fact that people who would take this logically possible view, after they had really imagined themselves in the other man’s position, are extremely rare.
    Richard M. Hare (b. 1919)