In logic, a many-valued logic (also multi- or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. An obvious extension to classical two-valued logic is an n-valued logic for n greater than 2. Those most popular in the literature are three-valued (e.g., Ćukasiewicz's and Kleene's, which accept the values "true", "false", and "unknown"), the finite-valued with more than three values, and the infinite-valued, such as fuzzy logic and probability logic.
Read more about Many-valued Logic: History, Relation To Classical Logic, Relation To Fuzzy Logic, Applications, Research Venues
Famous quotes containing the word logic:
“We want in every man a long logic; we cannot pardon the absence of it, but it must not be spoken. Logic is the procession or proportionate unfolding of the intuition; but its virtue is as silent method; the moment it would appear as propositions and have a separate value, it is worthless.”
—Ralph Waldo Emerson (18031882)