Manganese Compounds - History

History

The origin of the name manganese is complex. In ancient times, two black minerals from Magnesia in what is now modern Greece, were both called magnes from their place of origin, but were thought to differ in gender. The male magnes attracted iron, and was the iron ore we now know as lodestone or magnetite, and which probably gave us the term magnet. The female magnes ore did not attract iron, but was used to decolorize glass. This feminine magnes was later called magnesia, known now in modern times as pyrolusite or manganese dioxide. Neither this mineral nor manganese itself is magnetic. In the 16th century, manganese dioxide was called manganesum (note the two n's instead of one) by glassmakers, possibly as a corruption and concatenation of two words, since alchemists and glassmakers eventually had to differentiate a magnesia negra (the black ore) from magnesia alba (a white ore, also from Magnesia, also useful in glassmaking). Michele Mercati called magnesia negra manganesa, and finally the metal isolated from it became known as manganese (German: Mangan). The name magnesia eventually was then used to refer only to the white magnesia alba (magnesium oxide), which provided the name magnesium for that free element, when it was eventually isolated, much later.

Several oxides of manganese, for example manganese dioxide, are abundant in nature, and owing to their color, these oxides have been used as since the Stone Age. The cave paintings in Gargas contain manganese as pigments and these cave paintings are 30,000 to 24,000 years old.

Manganese compounds were used by Egyptian and Roman glassmakers, to either remove color from glass or add color to it. The use as "glassmakers soap" continued through the Middle Ages until modern times and is evident in 14th-century glass from Venice.

Because of the use in glassmaking, manganese dioxide was available to alchemists, the first chemists, and was used for experiments. Ignatius Gottfried Kaim (1770) and Johann Glauber (17th century) discovered that manganese dioxide could be converted to permanganate, a useful laboratory reagent. By the mid-18th century, the Swedish chemist Carl Wilhelm Scheele used manganese dioxide to produce chlorine. First, hydrochloric acid, or a mixture of dilute sulfuric acid and sodium chloride was made to react with manganese dioxide, later hydrochloric acid from the Leblanc process was used and the manganese dioxide was recycled by the Weldon process. The production of chlorine and hypochlorite containing bleaching agents was a large consumer of manganese ores.

Scheele and other chemists were aware that manganese dioxide contained a new element, but they were not able to isolate it. Johan Gottlieb Gahn was the first to isolate an impure sample of manganese metal in 1774, by reducing the dioxide with carbon.

The manganese content of some iron ores used in Greece led to the speculations that the steel produced from that ore contains inadvertent amounts of manganese, making the Spartan steel exceptionally hard. Around the beginning of the 19th century, manganese was used in steelmaking and several patents were granted. In 1816, it was noted that adding manganese to iron made it harder, without making it any more brittle. In 1837, British academic James Couper noted an association between heavy exposures to manganese in mines with a form of Parkinson's disease. In 1912, manganese phosphating electrochemical conversion coatings for protecting firearms against rust and corrosion were patented in the United States, and have seen widespread use ever since.

The invention of the Leclanché cell in 1866 and the subsequent improvement of the batteries containing manganese dioxide as cathodic depolarizer increased the demand of manganese dioxide. Until the introduction of the nickel-cadmium battery and lithium-containing batteries, most batteries contained manganese. The zinc-carbon battery and the alkaline battery normally use industrially produced manganese dioxide, because natural occurring manganese dioxide contains impurities. In the 20th century, manganese dioxide has seen wide commercial use as the chief cathodic material for commercial disposable dry cells and dry batteries of both the standard (zinc-carbon) and alkaline types.

Read more about this topic:  Manganese Compounds

Famous quotes containing the word history:

    Anyone who is practically acquainted with scientific work is aware that those who refuse to go beyond fact rarely get as far as fact; and anyone who has studied the history of science knows that almost every great step therein has been made by the “anticipation of Nature.”
    Thomas Henry Huxley (1825–95)

    A people without history
    Is not redeemed from time, for history is a pattern
    Of timeless moments.
    —T.S. (Thomas Stearns)

    We don’t know when our name came into being or how some distant ancestor acquired it. We don’t understand our name at all, we don’t know its history and yet we bear it with exalted fidelity, we merge with it, we like it, we are ridiculously proud of it as if we had thought it up ourselves in a moment of brilliant inspiration.
    Milan Kundera (b. 1929)