Manganese Compounds
Manganese is a chemical element, designated by the symbol Mn. It has the atomic number 25. It is found as a free element in nature (often in combination with iron), and in many minerals. Manganese is a metal with important industrial metal alloy uses, particularly in stainless steels.
Historically, manganese is named for various black minerals (such as pyrolusite) from the same region of Magnesia in Greece which gave names to similar-sounding magnesium, Mg, and magnetite, an ore of the element iron, Fe. By the mid-18th century, Swedish chemist Carl Wilhelm Scheele had used pyrolusite to produce chlorine. Scheele and others were aware that pyrolusite (now known to be manganese dioxide) contained a new element, but they were not able to isolate it. Johan Gottlieb Gahn was the first to isolate an impure sample of manganese metal in 1774, by reducing the dioxide with carbon.
Manganese phosphating is used as a treatment for rust and corrosion prevention on steel. Depending on their oxidation state, manganese ions have various colors and are used industrially as pigments. The permanganates of alkali and alkaline earth metals are powerful oxidizers. Manganese dioxide is used as the cathode (electron acceptor) material in zinc-carbon and alkaline batteries.
In biology, manganese(II) ions function as cofactors for a large variety of enzymes with many functions. Manganese enzymes are particularly essential in detoxification of superoxide free radicals in organisms that must deal with elemental oxygen. Manganese also functions in the oxygen-evolving complex of photosynthetic plants. The element is a required trace mineral for all known living organisms. In larger amounts, and apparently with far greater activity by inhalation, manganese can cause a poisoning syndrome in mammals, with neurological damage which is sometimes irreversible.
Read more about Manganese Compounds: History, Occurrence and Production, Applications, Biological Role, Precautions
Famous quotes containing the word compounds:
“We can come up with a working definition of life, which is what we did for the Viking mission to Mars. We said we could think in terms of a large molecule made up of carbon compounds that can replicate, or make copies of itself, and metabolize food and energy. So thats the thought: macrocolecule, metabolism, replication.”
—Cyril Ponnamperuma (b. 1923)