Weak Lp
Let (S, Σ, μ) be a measure space, and f a measurable function with real or complex values on S. The distribution function of f is defined for t > 0 by
If f is in Lp(S, μ) for some p with 1 ≤ p < ∞, then by Markov's inequality,
A function f is said to be in the space weak Lp(S, μ), or Lp,w(S, μ), if there is a constant C > 0 such that, for all t > 0,
The best constant C for this inequality is the Lp,w-norm of f, and is denoted by
The weak Lp coincide with the Lorentz spaces Lp,∞, so this notation is also used to denote them.
The Lp,w-norm is not a true norm, since the triangle inequality fails to hold. Nevertheless, for f in Lp(S, μ),
and in particular Lp(S, μ) ⊂ Lp,w(S, μ). Under the convention that two functions are equal if they are equal μ almost everywhere, then the spaces Lp,w are complete (Grafakos 2004).
For any 0 < r < p the expression
is comparable to the Lp,w-norm. Further in the case p > 1, this expression defines a norm if r = 1. Hence for p > 1 the weak Lp spaces are Banach spaces (Grafakos 2004).
A major result that uses the Lp,w-spaces is the Marcinkiewicz interpolation theorem, which has broad applications to harmonic analysis and the study of singular integrals.
Read more about this topic: Lp Space
Famous quotes containing the word weak:
“Shes in the house.
Shes at turn after turn.
Shes behind me.
Shes in front of me.
Shes in my bed.
Shes on path after path,
and Im weak from want of her.
O heart,
there is no reality for me
other than she she
she she she she
in the whole of the reeling world.
And philosophers talk about Oneness.”
—Amaru (c. seventh century A.D.)