Lp Space

Lp Space

In mathematics, the Lp spaces are function spaces defined using a natural generalization of the p-norm for finite-dimensional vector spaces. They are sometimes called Lebesgue spaces, named after Henri Lebesgue (Dunford & Schwartz 1958, III.3), although according to Bourbaki (1987) they were first introduced by Riesz (1910). Lp spaces form an important class of Banach spaces in functional analysis, and of topological vector spaces. Lebesgue spaces have applications in physics, statistics, finance, engineering, and other disciplines.

Read more about Lp Space:  The p-norm in Finite Dimensions, The p-norm in Countably Infinite Dimensions, Lp Spaces, Lp For 0 < p < 1, Weak Lp, Weighted Lp Spaces, Lp Spaces On Manifolds

Famous quotes containing the word space:

    The true gardener then brushes over the ground with slow and gentle hand, to liberate a space for breath round some favourite; but he is not thinking about destruction except incidentally. It is only the amateur like myself who becomes obsessed and rejoices with a sadistic pleasure in weeds that are big and bad enough to pull, and at last, almost forgetting the flowers altogether, turns into a Reformer.
    Freya Stark (1893–1993)