Definition
Let (Ω, F, P) be a probability space; let F∗ = { Ft | t ≥ 0 } be a filtration of F; let X : [0, +∞) × Ω → S be an F∗-adapted stochastic process. Then X is called an F∗-local martingale if there exists a sequence of F∗-stopping times τk : Ω → [0, +∞) such that
- the τk are almost surely increasing: P = 1;
- the τk diverge almost surely: P = 1;
- the stopped process
- is an F∗-martingale for every k.
Read more about this topic: Local Martingale
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)