Galilean Frame Transforms
For classical (Galileo-Newtonian) mechanics, the transformation law from one inertial or accelerating (including rotation) frame (reference frame travelling at constant velocity - including zero) to another is the Galilean transform.
Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative accelerations.
| Motion of entities | Inertial frames | Accelerating frames |
|---|---|---|
| Translation
V = Constant relative velocity between two inertial frames F and F'. |
Relative position Relative velocity |
Relative accelerations Apparent/ficticous forces |
| Rotation
Ω = Constant relative angular velocity between two frames F and F'. |
Relative angular position Relative velocity |
Relative accelerations Apparent/ficticous torques |
| Transformation of any vector T to a rotating frame |
||
Read more about this topic: List Of Equations In Classical Mechanics
Famous quotes containing the words galilean, frame and/or transforms:
“The Galilean is not a favourite of mine. So far from owing him any thanks for his favour, I cannot avoid confessing that I owe a secret grudge to his carpentership.”
—Percy Bysshe Shelley (17921822)
“The warped, distorted frame we have put around every Negro child from birth is around every white child also. Each is on a different side of the frame but each is pinioned there. And ... what cruelly shapes and cripples the personality of one is as cruelly shaping and crippling the personality of the other.”
—Lillian Smith (18971966)
“It is old age, rather than death, that is to be contrasted with life. Old age is lifes parody, whereas death transforms life into a destiny: in a way it preserves it by giving it the absolute dimension. ... Death does away with time.”
—Simone De Beauvoir (19081986)