Linear Combination - Linear Independence

Linear Independence

For some sets of vectors v1,...,vn, a single vector can be written in two different ways as a linear combination of them:

Equivalently, by subtracting these a non-trivial combination is zero:

If that is possible, then v1,...,vn are called linearly dependent; otherwise, they are linearly independent. Similarly, we can speak of linear dependence or independence of an arbitrary set S of vectors.

If S is linearly independent and the span of S equals V, then S is a basis for V.

Read more about this topic:  Linear Combination

Famous quotes containing the word independence:

    A tragic irony of life is that we so often achieve success or financial independence after the chief reason for which we sought it has passed away.
    Ellen Glasgow (1873–1945)