Lie Algebra - Category Theoretic Definition

Category Theoretic Definition

Using the language of category theory, a Lie algebra can be defined as an object A in Veck, the category of vector spaces over a field k of characteristic not 2, together with a morphism : AAA, where ⊗ refers to the monoidal product of Veck, such that

where τ (ab) := ba and σ is the cyclic permutation braiding (id ⊗ τA,A) ° (τA,A ⊗ id). In diagrammatic form:

Read more about this topic:  Lie Algebra

Famous quotes containing the words category and/or definition:

    Despair is typical of those who do not understand the causes of evil, see no way out, and are incapable of struggle. The modern industrial proletariat does not belong to the category of such classes.
    Vladimir Ilyich Lenin (1870–1924)

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)