Tokenizer
Tokenization is the process of demarcating and possibly classifying sections of a string of input characters. The resulting tokens are then passed on to some other form of processing. The process can be considered a sub-task of parsing input.
Take, for example,
The quick brown fox jumps over the lazy dog
The string isn't implicitly segmented on spaces, as an English speaker would do. The raw input, the 43 characters, must be explicitly split into the 9 tokens with a given space delimiter (i.e. matching the string " "
or regular expression /\s{1}/
).
The tokens could be represented in XML,
Or an s-expression,
(sentence ((word The) (word quick) (word brown) (word fox) (word jumps) (word over) (word the) (word lazy) (word dog)))A lexeme, however, is only a string of characters known to be of a certain kind (e.g., a string literal, a sequence of letters). In order to construct a token, the lexical analyzer needs a second stage, the evaluator, which goes over the characters of the lexeme to produce a value. The lexeme's type combined with its value is what properly constitutes a token, which can be given to a parser. (Some tokens such as parentheses do not really have values, and so the evaluator function for these can return nothing. The evaluators for integers, identifiers, and strings can be considerably more complex. Sometimes evaluators can suppress a lexeme entirely, concealing it from the parser, which is useful for whitespace and comments.)
For example, in the source code of a computer program, the string
net_worth_future = (assets - liabilities);
might be converted (with whitespace suppressed) into the lexical token stream:
NAME "net_worth_future" EQUALS OPEN_PARENTHESIS NAME "assets" MINUS NAME "liabilities" CLOSE_PARENTHESIS SEMICOLONThough it is possible and sometimes necessary, due to licensing restrictions of existing parsers or if the list of tokens is small, to write a lexer by hand, lexers are often generated by automated tools. These tools generally accept regular expressions that describe the tokens allowed in the input stream. Each regular expression is associated with a production rule in the lexical grammar of the programming language that evaluates the lexemes matching the regular expression. These tools may generate source code that can be compiled and executed or construct a state table for a finite-state machine (which is plugged into template code for compilation and execution).
Regular expressions compactly represent patterns that the characters in lexemes might follow. For example, for an English-based language, a NAME token might be any English alphabetical character or an underscore, followed by any number of instances of any ASCII alphanumeric character or an underscore. This could be represented compactly by the string *
. This means "any character a-z, A-Z or _, followed by 0 or more of a-z, A-Z, _ or 0-9".
Regular expressions and the finite-state machines they generate are not powerful enough to handle recursive patterns, such as "n opening parentheses, followed by a statement, followed by n closing parentheses." They are not capable of keeping count, and verifying that n is the same on both sides — unless you have a finite set of permissible values for n. It takes a full-fledged parser to recognize such patterns in their full generality. A parser can push parentheses on a stack and then try to pop them off and see if the stack is empty at the end. (see example in the SICP book).
The Lex programming tool and its compiler is designed to generate code for fast lexical analysers based on a formal description of the lexical syntax. It is not generally considered sufficient for applications with a complicated set of lexical rules and severe performance requirements; for instance, the GNU Compiler Collection (gcc) uses hand-written lexers.
Read more about this topic: Lexical Analysis