Legendre Functions of Fractional Order
Legendre functions of fractional order exist and follow from insertion of fractional derivatives as defined by fractional calculus and non-integer factorials (defined by the gamma function) into the Rodrigues' formula. The resulting functions continue to satisfy the Legendre differential equation throughout (−1,1), but are no longer regular at the endpoints. The fractional order Legendre function Pn agrees with the associated Legendre polynomial P0
n.
Read more about this topic: Legendre Polynomials
Famous quotes containing the words functions, fractional and/or order:
“Adolescents, for all their self-involvement, are emerging from the self-centeredness of childhood. Their perception of other people has more depth. They are better equipped at appreciating others reasons for action, or the basis of others emotions. But this maturity functions in a piecemeal fashion. They show more understanding of their friends, but not of their teachers.”
—Terri Apter (20th century)
“Hummingbird
stay for a fractional sharp
sweetness, ands gone, cant take
more than that.”
—Denise Levertov (b. 1923)
“We have created an industrial order geared to automatism, where feeble-mindedness, native or acquired, is necessary for docile productivity in the factory; and where a pervasive neurosis is the final gift of the meaningless life that issues forth at the other end.”
—Lewis Mumford (18951990)