Limitations of Lebesgue Integral
The main purpose of Lebesgue integral is to provide an integral notation where limits of integrals hold under mild assumptions. There is no guarantee that every function is Lebesgue integrable. It may happen that improper (Riemann) integral may exist for functions that are not Lebesgue integrable. One example would be . This function is not Lebesgue integrable as . On the other hand, it exists as an improper Riemann integral and the integral can be computed to be finite. An equivalent concept of improper Lebesgue integral does not exist because such a perspective is unnecessary from the viewpoint of the convergence theorems.
Read more about this topic: Lebesgue Integration
Famous quotes containing the words limitations of, limitations and/or integral:
“The motion picture made in Hollywood, if it is to create art at all, must do so within such strangling limitations of subject and treatment that it is a blind wonder it ever achieves any distinction beyond the purely mechanical slickness of a glass and chromium bathroom.”
—Raymond Chandler (18881959)
“Growing up means letting go of the dearest megalomaniacal dreams of our childhood. Growing up means knowing they cant be fulfilled. Growing up means gaining the wisdom and skills to get what we want within the limitations imposed by realitya reality which consists of diminished powers, restricted freedoms and, with the people we love, imperfect connections.”
—Judith Viorst (20th century)
“... no one who has not been an integral part of a slaveholding community, can have any idea of its abominations.... even were slavery no curse to its victims, the exercise of arbitrary power works such fearful ruin upon the hearts of slaveholders, that I should feel impelled to labor and pray for its overthrow with my last energies and latest breath.”
—Angelina Grimké (18051879)