Limitations of Lebesgue Integral
The main purpose of Lebesgue integral is to provide an integral notation where limits of integrals hold under mild assumptions. There is no guarantee that every function is Lebesgue integrable. It may happen that improper (Riemann) integral may exist for functions that are not Lebesgue integrable. One example would be . This function is not Lebesgue integrable as . On the other hand, it exists as an improper Riemann integral and the integral can be computed to be finite. An equivalent concept of improper Lebesgue integral does not exist because such a perspective is unnecessary from the viewpoint of the convergence theorems.
Read more about this topic: Lebesgue Integration
Famous quotes containing the words limitations of, limitations and/or integral:
“The motion picture made in Hollywood, if it is to create art at all, must do so within such strangling limitations of subject and treatment that it is a blind wonder it ever achieves any distinction beyond the purely mechanical slickness of a glass and chromium bathroom.”
—Raymond Chandler (18881959)
“Much of what contrives to create critical moments in parenting stems from a fundamental misunderstanding as to what the child is capable of at any given age. If a parent misjudges a childs limitations as well as his own abilities, the potential exists for unreasonable expectations, frustration, disappointment and an unrealistic belief that what the child really needs is to be punished.”
—Lawrence Balter (20th century)
“Make the most of your regrets; never smother your sorrow, but tend and cherish it till it come to have a separate and integral interest. To regret deeply is to live afresh.”
—Henry David Thoreau (18171862)