Definition
The Laplace operator is a second order differential operator in the n-dimensional Euclidean space, defined as the divergence (∇·) of the gradient (∇ƒ). Thus if ƒ is a twice-differentiable real-valued function, then the Laplacian of ƒ is defined by
-
(1)
Equivalently, the Laplacian of ƒ is the sum of all the unmixed second partial derivatives in the Cartesian coordinates :
-
(2)
As a second-order differential operator, the Laplace operator maps Ck-functions to Ck−2-functions for k ≥ 2. The expression (1) (or equivalently (2)) defines an operator Δ : Ck(Rn) → Ck−2(Rn), or more generally an operator Δ : Ck(Ω) → Ck−2(Ω) for any open set Ω.
Read more about this topic: Laplace Operator
Famous quotes containing the word definition:
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)