Definition
The Laplace operator is a second order differential operator in the n-dimensional Euclidean space, defined as the divergence (∇·) of the gradient (∇ƒ). Thus if ƒ is a twice-differentiable real-valued function, then the Laplacian of ƒ is defined by
-
(1)
Equivalently, the Laplacian of ƒ is the sum of all the unmixed second partial derivatives in the Cartesian coordinates :
-
(2)
As a second-order differential operator, the Laplace operator maps Ck-functions to Ck−2-functions for k ≥ 2. The expression (1) (or equivalently (2)) defines an operator Δ : Ck(Rn) → Ck−2(Rn), or more generally an operator Δ : Ck(Ω) → Ck−2(Ω) for any open set Ω.
Read more about this topic: Laplace Operator
Famous quotes containing the word definition:
“It is very hard to give a just definition of love. The most we can say of it is this: that in the soul, it is a desire to rule; in the spirit, it is a sympathy; and in the body, it is but a hidden and subtle desire to possessafter many mysterieswhat one loves.”
—François, Duc De La Rochefoucauld (16131680)
“Im beginning to think that the proper definition of Man is an animal that writes letters.”
—Lewis Carroll [Charles Lutwidge Dodgson] (18321898)
“Beauty, like all other qualities presented to human experience, is relative; and the definition of it becomes unmeaning and useless in proportion to its abstractness. To define beauty not in the most abstract, but in the most concrete terms possible, not to find a universal formula for it, but the formula which expresses most adequately this or that special manifestation of it, is the aim of the true student of aesthetics.”
—Walter Pater (18391894)