In mathematics and physics, a quantum graph is a linear, network-shaped structure of vertices connected by bonds (or edges) with a differential or pseudo-differential operator acting on functions defined on the bonds. Such systems were first studied by Linus Pauling as models of free electrons in organic molecules in the 1930s. They arise in a variety of mathematical contexts, e.g. as model systems in quantum chaos, in the study of waveguides, in photonic crystals and in Anderson localization, or as limit on shrinking thin wires. Quantum graphs have become prominent models in mesoscopic physics used to obtain a theoretical understanding of nanotechnology.
Read more about Quantum Graph: Metric Graphs, Quantum Graphs, Theorems, Applications
Famous quotes containing the words quantum and/or graph:
“The receipt to make a speaker, and an applauded one too, is short and easy.Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.”
—Philip Dormer Stanhope, 4th Earl Chesterfield (16941773)
“When producers want to know what the public wants, they graph it as curves. When they want to tell the public what to get, they say it in curves.”
—Marshall McLuhan (19111980)