Lambert W Function

In mathematics, the Lambert W function, also called the omega function or product logarithm, is a set of functions, namely the branches of the inverse relation of the function f(w) = wew where ew is the exponential function and w is any complex number. In other words, the defining equation for W(z) is

for any complex number z.

Since the function ƒ is not injective, the relation W is multivalued (except at 0). If we restrict attention to real-valued W then the relation is defined only for x ≥ −1/e, and is double-valued on (−1/e, 0); the additional constraint W ≥ −1 defines a single-valued function W0(x). We have W0(0) = 0 and W0(−1/e) = −1. Meanwhile, the lower branch has W ≤ −1 and is denoted W−1(x). It decreases from W−1(−1/e) = −1 to W−1(0−) = −∞.

The Lambert W relation cannot be expressed in terms of elementary functions. It is useful in combinatorics, for instance in the enumeration of trees. It can be used to solve various equations involving exponentials (e.g. the maxima of the Planck, Bose-Einstein, and Fermi-Dirac distributions) and also occurs in the solution of delay differential equations, such as y'(t) = a y(t − 1).

Read more about Lambert W Function:  Terminology, History, Asymptotic Expansions, Special Values, Other Formulas, Applications, Plots, Numerical Evaluation, Software

Famous quotes containing the words lambert and/or function:

    Our duty now is to keep alive—to exist. What becomes of a nation if its citizens all die?
    Dudley Nichols, U.S. screenwriter. Jean Renoir. George Lambert (George Sanders)

    The press and politicians. A delicate relationship. Too close, and danger ensues. Too far apart and democracy itself cannot function without the essential exchange of information. Creative leaks, a discreet lunch, interchange in the Lobby, the art of the unattributable telephone call, late at night.
    Howard Brenton (b. 1942)