Formal Statement
Let each source symbol from the alphabet
be encoded into a uniquely decodable code over an alphabet of size with codeword lengths
Then
Conversely, for a given set of natural numbers satisfying the above inequality, there exists a uniquely decodable code over an alphabet of size with those codeword lengths.
A commonly occurring special case of a uniquely decodable code is a prefix code. Kraft's inequality therefore also holds for any prefix code.
Read more about this topic: Kraft's Inequality
Famous quotes containing the words formal and/or statement:
“This is no argument against teaching manners to the young. On the contrary, it is a fine old tradition that ought to be resurrected from its current mothballs and put to work...In fact, children are much more comfortable when they know the guide rules for handling the social amenities. Its no more fun for a child to be introduced to a strange adult and have no idea what to say or do than it is for a grownup to go to a formal dinner and have no idea what fork to use.”
—Leontine Young (20th century)
“He that writes to himself writes to an eternal public. That statement only is fit to be made public, which you have come at in attempting to satisfy your own curiosity.”
—Ralph Waldo Emerson (18031882)