In coding theory, Kraft's inequality, named after Leon Kraft, gives a sufficient condition for the existence of a prefix code and necessary condition for the existence of a uniquely decodable code for a given set of codeword lengths. Its applications to prefix codes and trees often find use in computer science and information theory.
More specifically, Kraft's inequality limits the lengths of codewords in a prefix code: if one takes an exponential function of each length, the resulting values must look like a probability mass function. Kraft's inequality can be thought of in terms of a constrained budget to be spent on codewords, with shorter codewords being more expensive.
- If Kraft's inequality holds with strict inequality, the code has some redundancy.
- If Kraft's inequality holds with strict equality, the code in question is a complete code.
- If Kraft's inequality does not hold, the code is not uniquely decodable.
Kraft's inequality was published by Kraft (1949). However, Kraft's paper discusses only prefix codes, and attributes the analysis leading to the inequality to Raymond Redheffer. The inequality is sometimes also called the Kraft–McMillan theorem after the independent discovery of the result by McMillan (1956); McMillan proves the result for the general case of uniquely decodable codes, and attributes the version for prefix codes to a spoken observation in 1955 by Joseph Leo Doob.
Read more about Kraft's Inequality: Formal Statement, Proof For Prefix Codes, Proof of The General Case
Famous quotes containing the word inequality:
“Love is a great thing. It is not by chance that in all times and practically among all cultured peoples love in the general sense and the love of a man for his wife are both called love. If love is often cruel or destructive, the reasons lie not in love itself, but in the inequality between people.”
—Anton Pavlovich Chekhov (18601904)