Definition
A T0 space is a topological space in which every pair of distinct points is topologically distinguishable. That is, for any two different points x and y there is an open set which contains one of these points and not the other.
Note that topologically distinguishable points are automatically distinct. On the other hand, if the singleton sets {x} and {y} are separated, then the points x and y must be topologically distinguishable. That is,
- separated ⇒ topologically distinguishable ⇒ distinct
The property of being topologically distinguishable is, in general, stronger than being distinct but weaker than being separated. In a T0 space, the second arrow above reverses; points are distinct if and only if they are distinguishable. This is how the T0 axiom fits in with the rest of the separation axioms.
Read more about this topic: Kolmogorov Space
Famous quotes containing the word definition:
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animalsjust as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.”
—Ana Castillo (b. 1953)
“Mothers often are too easily intimidated by their childrens negative reactions...When the child cries or is unhappy, the mother reads this as meaning that she is a failure. This is why it is so important for a mother to know...that the process of growing up involves by definition things that her child is not going to like. Her job is not to create a bed of roses, but to help him learn how to pick his way through the thorns.”
—Elaine Heffner (20th century)